National Semiconductor

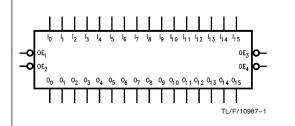
74ABT162244 16-Bit Buffer/Line Driver with 25 Ω Series Resistors in the Outputs

General Description

The 'ABT162244 contains sixteen non-inverting buffers with TRI-STATE® outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble controlled. Individual TRI-STATE control inputs can be shorted together for 8-bit or 16-bit operation.

Features

- Separate control logic for each nibble
- 16-bit version of the 'ABT2244
- Guaranteed latch protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability


The 25Ω series resistors in the outputs reduce ringing and eliminate the need for external resistors.

Commercial	Package Number	Package Description
74ABT162244CSSC (Note 1)	MS48A	48-Lead (0.300" Wide) Molded Shrink Small Outline, JEDEC (SSOP)
74ABT162244CMTD (Notes 1, 2)	MTD48	48-Lead Molded Thin Shrink Small Outline, JEDEC (TSSOP)

Note 1: Devices also available in 13" reel. Use suffix = SSCX and MTDX. Note 2: Contact factory for package availability.

Logic Symbol

Connection Diagram

Pin Description

Pin Names	Description
ŌĒn	Output Enable Input (Active Low)
I0-I15	Inputs
O ₀ -O ₁₅	Outputs

don Blagram							
Pin A	ssignment	for	SSOP				
		48					
°0 —	2	47	- 10 [°]				
<u>м</u> —	3	46	μů				
GND -	4	45	GND				
0 ₂ —	5	44	- 1 ₂				
0 ₃ —	6	43	- 1 ₃				
v _{cc} –	7	42	- v _{cc}				
°4 —	8	41	⊢ ₁₄				
0 ₅ —	9	40	- 1 ₅				
GND —	10	39	- GND				
° ₆ —	11	38	- 1 ₆				
0 ₇ —	12	37	- 17				
0 ₈ —	13	36	- 1 ₈				
0 ₉ —	14	35	<u>ا ا</u>				
GND —	15	34	- GND				
0 ₁₀ —	16	33	- 40				
0 ₁₁ —	17	32	– կլ				
v _{cc} —	18	31	– v _{cc}				
0 ₁₂ —	19	30	- I ₁₂				
0 _{1 3} —	20	29	- 43				
GND —	21	28	— GND				
0 ₁₄ —	22	27	- I ₁₄				
0 ₁₅ —	23	26	- I15				
OE4	24	25	- OE3				
			1	TL/F/10987-2			

RRD-B30M125/Printed in U. S. A.

© 1995 National Semiconductor Corporation TL/F/10987

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

74ABT 162244 16-Bit Buffer/Line Driver with 25 Ω Series Resistors in the Outputs

December 1995

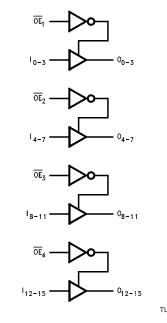
Functional Description

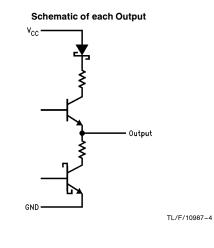
The 'ABT162244 contains sixteen non-inverting buffers with TRI-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but indepen-

Truth Tables

Inp	Outputs	
OE ₁	I0-I3	0 ₀ -0 ₃
L	L	L
L	Н	Н
Н	Х	Z

In	Outputs	
OE ₃	I ₈ -I ₁₁	0 ₈ -0 ₁₁
L	L	L
L	Н	н
н	Х	Z


dent of the other. The control pins can be shorted together to obtain full 16-bit operation.


Inp	Outputs	
OE ₂	I4-I7	04-07
L	L	L
L	Н	Н
Н	х	Z

Ir	Outputs	
OE ₄	I ₁₂ -I ₁₅	0 ₁₂ -0 ₁₅
L	L	L
L	н	н
Н	Х	Z

H = High Voltage LevelL = Low Voltage LevelX = ImmaterialZ = High Impedance

Logic Diagrams

TL/F/10987-3

2

Absolute Maximum Ratings (Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	
Plastic	-55°C to +150°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to $+7.0V$
Input Current (Note 2)	-30 mA to $+5.0$ mA
Voltage Applied to Any Output	
in the Disabled or	
Power-off State	-0.5V to 5.5V
in the HIGH State	-0.5V to V _{CC}
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)

 DC Latchup Source Current
 -500 mA

 Over Voltage Latchup (I/O)
 10V

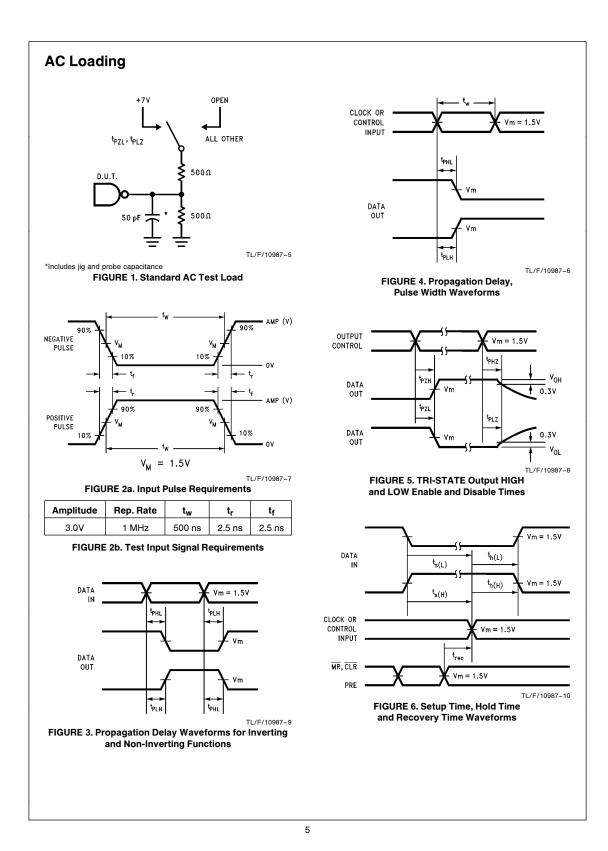
 Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under

be damaged or have its useful life impaired. Functional operation und these conditions is not implied.

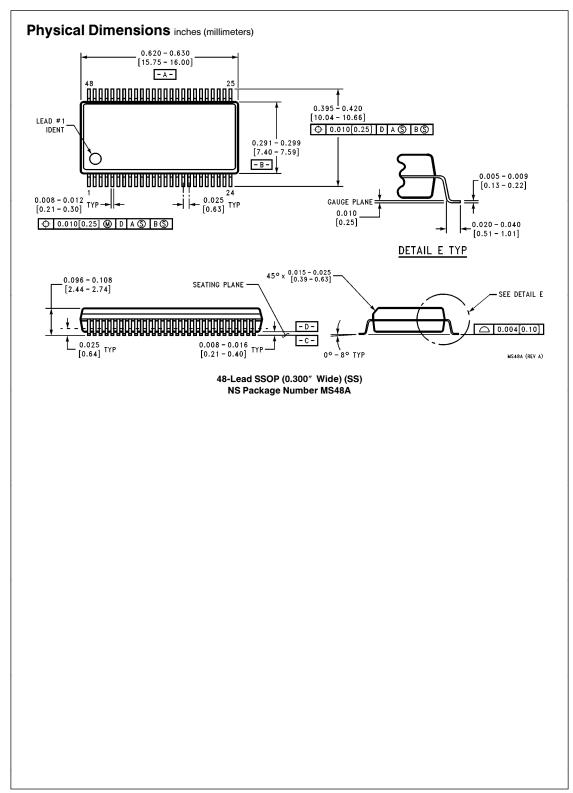
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

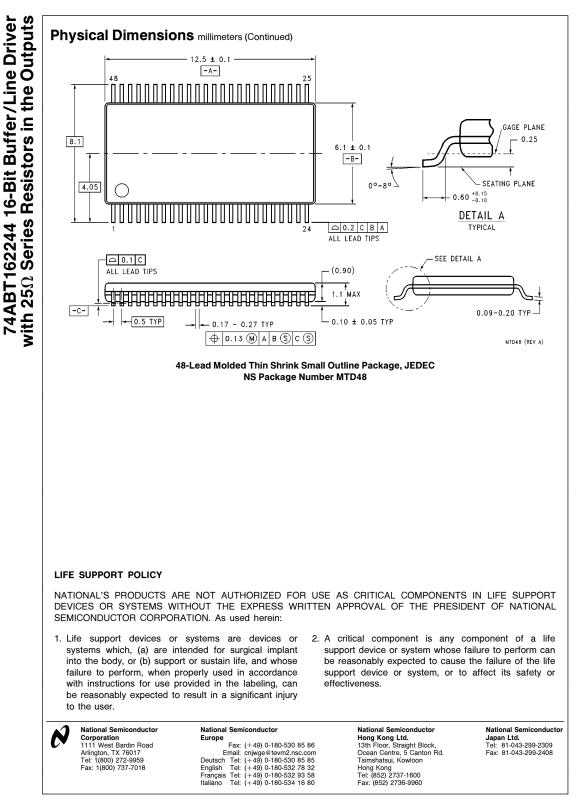
Recommended Operating Conditions

Free Air Ambient Temperature	
Commercial	-40°C to +85°C
Supply Voltage	
Commercial	+4.5V to +5.5V
Minimum Input Edge Rate	$(\Delta V / \Delta t)$
Data Input	50 mV/ns
Enable Input	20 mV/ns


DC Electrical Characteristics

Cumhal	Parameter		ABT162244			Unite	v	Conditions
Symbol	Paran	neter	Min	Тур	Max	Units	Vcc	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Vo	tage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	74ABT	2.5			V	Min	$I_{OH} = -3 \text{ mA}$
		74ABT	2.0			V	Min	$I_{OH} = -32 \text{ mA}$
V _{OL}	Output LOW Voltage	74ABT			0.8	V	Min	$I_{OL} = 12 \text{ mA}$
IIH	Input HIGH Current				5 5	μΑ	Max	$V_{IN} = 2.7V$ (Note 1) $V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current Breakdown Test				7	μΑ	Max	V _{IN} = 7.0V
Ι _{ΙL}	Input LOW Current				-5 -5	μΑ	Max	$\begin{array}{l} V_{\text{IN}} = 0.5 \text{V} \mbox{ (Note 1)} \\ V_{\text{IN}} = 0.0 \text{V} \end{array}$
V _{ID}	Input Leakage Test		4.75			v	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded
I _{OZH}	Output Leakage Curre	nt			50	μA	0-5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
I _{OZL}	Output Leakage Curre	nt			-50	μΑ	0 - 5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
I _{OS}	Output Short-Circuit C	urrent	-100		-275	mA	Max	$V_{OUT} = 0.0V$
I _{CEX}	Output High Leakage	Current			50	μA	Max	$V_{OUT} = V_{CC}$
I _{ZZ}	Bus Drainage Test				100	μΑ	0.0	$V_{OUT} = 5.5V$; All Others GND
ICCH	Power Supply Current				2.0	mA	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				60	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current				2.0	mA	Max	$\overline{OE}_n = V_{CC}$ All Others at V _{CC} or GND
ICCT	Additional I _{CC} /Input	Outputs Enabled Outputs TRI-STATE Outputs TRI-STATE			3.0 3.0 50	mA mA μA	Max	$ \begin{array}{l} V_{I} = V_{CC} - 2.1V \\ \text{Enable Input } V_{I} = V_{CC} - 2.1V \\ \text{Data Input } V_{I} = V_{CC} - 2.1V \\ \text{All Others at } V_{CC} \text{ or } \text{GND} \end{array} $
ICCD	Dynamic I _{CC} (Note 1)	No Load			0.1	mA/ MHz	Max	Outputs Open $\overline{OE}_n = GND$ One Bit Toggling, 50% Duty Cycle


Symbol Parameter	74ABT			74A			
	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5V$ $C_{L} = 50 \text{ pF}$			T _A = −40°C to +85°C V _{CC} = 4.5V−5.5V C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	1
t _{PLH}	Propagation	1.0	2.4	3.9	1.0	3.9	
t _{PHL}	Delay Data to Outputs	1.0	3.2	4.7	1.0	4.7	ns
t _{PZH}	Output	1.5	3.5	6.3	1.5	6.3	
t _{PZL}	Enable Time	1.5	4.2	6.9	1.5	6.9	ns
t _{PHZ}	Output	1.0	4.2	6.7	1.0	6.7	-
t _{PLZ}	Disable Time	1.0	3.8	6.7	1.0	6.7	ns


Symbol	Parameter	Тур	Units	Conditions, $T_A = 25^{\circ}C$
C _{IN}	Input Capacitance	5.0	pF	$V_{CC} = 0.0V$
C _{OUT} (Note 1)	Output Capacitance	9.0	pF	$V_{CC} = 5.0V$

Note 1: C_{OUT} is measured at frequency f = 1 MHz per MIL-STD-883B, Method 3012.

	<u>74ABT</u> <u>1622</u>	<u>44C SS C</u>	× T	
Temperature Range Family — 74ABT = Commercial			Special Variatio X = Device	ons s shipped in 13" reels
Device Type			Temperature Ra	nge
Package Code SS = Small Outline (SSOP) MTD = Molded Thin Shrink Sr	mall Outline (TSSC		C = Commerc	sial (-40°C to +85°C)
				TL/F/1098

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

74ABT162244 - http://www.ti.com/product/74abt162244?HQS=TI-null-null-dscatalog-df-pf-null-wwe